Supplementary Information

Rate-dependent mechanical behavior of single-, bi-, twinned-, and poly-crystals of CoCrFeNi high-entropy alloy

Siyuan Wei^{1*}, Yakai Zhao^{1*}, Jae-il Jang², Upadrasta Ramamurty^{1,3}

 ¹School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore.
²Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea.
³Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore 138634, Republic of Singapore

* Co-corresponding authors: siyuan007@e.ntu.edu.sg (S. Wei), yakai.zhao@ntu.edu.sg

⁽Y. Zhao)

Figure S1. (a) Schematic diagram illustrating the loading axis-rolling direction (RD) relationship in bulk tension, bulk compression, and micropillar compression. (b) Illustration for the crystallographic orientation dependence of the Schmid factor.

Figure S2. Morphologies of SC-, BC-, and TC-pillars after compression tests at $\dot{\varepsilon} = 10^{-3}$, 5×10^{-3} , and 10^{-2} s⁻¹. Yellow and red dashed lines indicate the GBs and TBs in the pillars, respectively.

Figure S3. Representative engineering stress–strain plots of the micropillar compression test results at $\dot{\epsilon} = 10^{-2}$, 5×10^{-3} , and 10^{-3} s⁻¹ of SC-, BC-, and TC-pillars.

Figure S4. Instantaneous work hardening rate against true strain under bulk tension (a) and compression (b) testing at strain rate $\dot{\varepsilon} = 10^{-4}$, 10^{-3} , and 10^{-2} s⁻¹.